首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3851篇
  免费   305篇
  2023年   37篇
  2022年   64篇
  2021年   125篇
  2020年   132篇
  2019年   128篇
  2018年   162篇
  2017年   138篇
  2016年   206篇
  2015年   248篇
  2014年   263篇
  2013年   312篇
  2012年   341篇
  2011年   287篇
  2010年   164篇
  2009年   168篇
  2008年   178篇
  2007年   174篇
  2006年   146篇
  2005年   130篇
  2004年   94篇
  2003年   88篇
  2002年   85篇
  2001年   60篇
  2000年   66篇
  1999年   65篇
  1998年   15篇
  1997年   15篇
  1996年   17篇
  1995年   18篇
  1994年   6篇
  1993年   7篇
  1992年   17篇
  1991年   16篇
  1990年   15篇
  1989年   16篇
  1988年   11篇
  1987年   13篇
  1986年   9篇
  1985年   8篇
  1984年   12篇
  1983年   7篇
  1982年   9篇
  1981年   7篇
  1980年   11篇
  1979年   8篇
  1978年   9篇
  1977年   5篇
  1973年   4篇
  1971年   6篇
  1967年   4篇
排序方式: 共有4156条查询结果,搜索用时 15 毫秒
991.
We investigate the diversity of yeasts isolated in gardens of the leafcutter ant Atta texana. Repeated sampling of gardens from four nests over a 1-year time period showed that gardens contain a diverse assemblage of yeasts. The yeast community in gardens consisted mostly of yeasts associated with plants or soil, but community composition changed between sampling periods. In order to understand the potential disease-suppressing roles of the garden yeasts, we screened isolates for antagonistic effects against known microfungal garden contaminants. In vitro assays revealed that yeasts inhibited the mycelial growth of two strains of Escovopsis (a specialized attine garden parasite), Syncephalastrum racemosum (a fungus often growing in gardens of leafcutter lab nests), and the insect pathogen Beauveria bassiana. These garden yeasts add to the growing list of disease-suppressing microbes in attine nests that may contribute synergistically, together with actinomycetes and Burkholderia bacteria, to protect the gardens and the ants against diseases. Additionally, we suggest that garden immunity against problem fungi may therefore derive not only from the presence of disease-suppressing Pseudonocardia actinomycetes, but from an enrichment of multiple disease-suppressing microorganisms in the garden matrix.  相似文献   
992.
In this work, a three-dimensional model for bone remodeling is presented, taking into account the hierarchical structure of bone. The process of bone tissue adaptation is mathematically described with respect to functional demands, both mechanical and biological, to obtain the bone apparent density distribution (at the macroscale) and the trabecular structure (at the microscale). At global scale bone is assumed as a continuum material characterized by equivalent (homogenized) mechanical properties. At local scale a periodic cellular material model approaches bone trabecular anisotropy as well as bone surface area density. For each scale there is a material distribution problem governed by density-based design variables which at the global level can be identified with bone relative density. In order to show the potential of the model, a three-dimensional example of the proximal femur illustrates the distribution of bone apparent density as well as microstructural designs characterizing both anisotropy and bone surface area density. The bone apparent density numerical results show a good agreement with Dual-energy X-ray Absorptiometry (DXA) exams. The material symmetry distributions obtained are comparable to real bone microstructures depending on the local stress field. Furthermore, the compact bone porosity is modeled giving a transversal isotropic behavior close to the experimental data. Since, some computed microstructures have no permeability one concludes that bone tissue arrangement is not a simple stiffness maximization issue but biological factors also play an important role.  相似文献   
993.
The development of cancer is a complex, multistage process during which a normal cell undergoes genetic changes that result in phenotypic alterations and in the acquisition of the ability to invade other sites. Inductively coupled plasma optical emission spectroscopy was used to estimate the contents of Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, P, Pb, and Zn in healthy kidney and renal cell carcinoma (RCC), and significant differences were found for all elements. Along with the progression of the malignant disease, a progressive decrease of Cd and K was observed. In fact, for Cd, the concentration in stage T4 was 263.9 times lower than in stage T1, and for K, the concentration in stage T4 was 1.73 times lower than in stage T1. Progressive accumulation was detected for P, Pb, and Zn in stage T4. For P, the concentration in stage T4 was 11.1 times higher than in stage T1; for Pb, the concentration in stage T4 was 232.7 times higher than in T1; and for Zn, the concentration in T4 was 8.452 times higher than in T1. This study highlights the marked differences in the concentrations of selected trace metals in different malignant tumor stages. These findings indicate that some trace metals may play important roles in the pathogenesis of RCC.  相似文献   
994.
We report the isolation of 11 polymorphic tetranucleotide microsatellite loci in the Egyptian mongoose (Herpestes ichneumon). In a sample of 27 individuals, we observed between 4 and 7 alleles per locus and their observed and expected heterozygosities ranged from 0.37 to 0.85 and from 0.44 to 0.79, respectively. All genotypic frequencies conformed to Hardy-Weinberg equilibrium expectations and there were no instances of linkage disequilibrium detected between pairs of loci.  相似文献   
995.

Background

Potentially chloroquine resistant P. falciparum, identified by the 76T haplotype in the chloroquine resistance transporter (pfcrt 76T), are highly prevalent throughout Africa. In Guinea-Bissau, normal and double dose chloroquine have respective efficacies of 34% and 78% against P.falciparum with pfcrt 76T and approximately three times the normal dose of chloroquine is routinely taken. Proportions of pfcrt 76T generally increase during high transmission seasons, as P.falciparum with pfcrt 76T commonly survive treatment with normal dose chloroquine. In Guinea-Bissau, there should be no seasonal increase of pfcrt 76T if the high doses of CQ commonly used are effective.

Methods and Findings

P. falciparum parasite density, age, sex, the proportion of chloroquine resistance associated haplotypes pfcrt 76T and P. falciparum multidrug resistance gene 1 86Y were assessed in 988 samples collected from children between 2002 and 2007. There was no seasonal accumulation of any allele. During the high and low transmission periods the pfcrt 76T proportions were 24% (95% CI, 21–27%) and 26% (95% CI, 20–33%). There was no significant change of pfcrt 76T (OR 1.05, 95% CI; 0.94–1.16 p = 0.39) or pfmdr1 86Y (OR 0.92, 95%CI; 0.83–1.01 p = 0.08) proportions between 2003 and 2007. Lower median parasite density (P.falciparum/µl) was associated with pfcrt 76T (15254 [95% CI, 12737–17772]; n = 164) compared to pfcrt 76K (18664 [95% CI, 16676–20653]; p = 0.003; n = 591). Similarly, pfmdr1 86Y was associated with a lower median parasite density (16320 [95% CI, 13696–18944]; n = 224) compared to pfmdr1 86N, (18880 [95% CI, 16701–21059]; P = 0.018; n = 445).

Conclusions

In contrast to the rest of Africa, P. falciparum parasites resistant to normal dose chloroquine do not have a selective advantage great enough to become the dominant P.falciparum type in Guinea-Bissau. This is most likely due to the efficacy of high-dose chloroquine as used in Guinea-Bissau, combined with a loss of fitness associated with pfcrt 76T.  相似文献   
996.

Background

Resistance Nodulation Division (RND) efflux pumps of Escherichia coli extrude antibiotics and toxic substances before they reach their intended targets. Whereas these pumps obtain their energy directly from the proton motive force (PMF), ATP-Binding Cassette (ABC) transporters, which can also extrude antibiotics, obtain energy from the hydrolysis of ATP. Because E. coli must pass through two pH distinct environments of the gastrointestinal system of the host, it must be able to extrude toxic agents at very acidic and at near neutral pH (bile salts in duodenum and colon for example). The herein described study examines the effect of pH on the extrusion of ethidium bromide (EB).

Methodology/Principal Findings

E. coli AG100 and its tetracycline induced progeny AG100TET that over-expresses the acrAB efflux pump were evaluated for their ability to extrude EB at pH 5 and 8, by our recently developed semi-automated fluorometric method. At pH 5 the organism extrudes EB without the need for metabolic energy (glucose), whereas at pH 8 extrusion of EB is dependent upon metabolic energy. Phe-Arg β-naphtylamide (PAβN), a commonly assumed inhibitor of RND efflux pumps has no effect on the extrusion of EB as others claim. However, it does cause accumulation of EB. Competition between EB and PAβN was demonstrated and suggested that PAβN was preferentially extruded. A Km representing competition between PAβN and EB has been calculated.

Conclusions/Significance

The results suggest that E. coli has two general efflux systems (not to be confused with a distinct efflux pump) that are activated at low and high pH, respectively, and that the one at high pH is probably a putative ABC transporter coded by msbA, which has significant homology to the ABC transporter coded by efrAB of Enterococcus faecalis, an organism that faces similar challenges as it makes its way through the toxic intestinal system of the host.  相似文献   
997.
The effects of oxygenation in cultures of Bacillus circulans BL32 on transglutaminase (TGase) production and cell sporulation were studied by varying the agitation speed and the volume of aeration. Kinetics of cultivations has been studied in batch systems using a 2 L bioreactor, and the efficiency of agitation and aeration was evaluated through the oxygen volumetric mass transfer coefficient (kLa). It was adopted a two-stage aeration rate control strategy: first stage to induce biomass formation, followed by a second stage, in which cell sporulation was stimulated. A correlation of TGase production, spores formation, and oxygen concentration was established. Under the best conditions (500 rpm; 2 vvm air flow, followed by no air supply during stationary phase; kLa of 33.7 h−1), TGase production reached a volumetric production of 589 U/L after 50 h of cultivation and the enzyme yield was 906 U/g cells. These values are 61% higher than that obtained in shaker cultures and TGase productivity increased 82%, when kLa varied from 4.4 to 33.7 h−1. The maximal cell concentration increased four times in relation to shaker cultures and the cultivation time for the highest TGase activity was reduced from 192 h to just 50 h. These results show the importance of bioprocess design for the production of microbial TGase, especially concerning the oxygen supply of cultures and the induction of cell sporulation.  相似文献   
998.
The principal objectives of this study were to evaluate the kinetics of lipase production by Staphylococcus warneri EX17 under different oxygen volumetric mass transfer coefficients (kLa) and pH conditions in submerged bioreactors, using glycerol (a biodiesel by-product) as a carbon source. Cultivations were conducted at different kLa (26, 38, 50, and 83 h−1) and pH values (6.0, 7.0, and 8.0). The optimal kLa and pH were 38 h−1 and 7.0, respectively. Under these conditions, the maximal cell production obtained was 8.0 g/L, and the volumetric and specific lipase production reached high levels of activity, approximately 800 U/L and 150 U/g cell, respectively, after 12 h of cultivation. This result was approximately five times higher than that obtained in the shake flask cultures. The relationship between cell growth and lipase production was found to be associated with growth by the Luedeking-Piret model.  相似文献   
999.
Aims:  To investigate the diversity and the catabolic capacity of oil-degrading Klebsiella strains isolated from hydrocarbon-contaminated sediments in Santos–São Vicente estuary systems in Brazil.
Methods and Results:  Klebsiella strains obtained from the estuary were characterized using 16S rRNA gene sequencing and BOX-PCR patterns, testing their catabolic capacity to degrade toluene, xylene, naphthalene and nonane, and identifying the catabolic genes present in the oil-degrading strains. Results show that Klebsiella strains were widespread in the estuary. Twenty-one isolates from the Klebsiella genus were obtained; 14 had unique BOX patterns and were further investigated. Among four distinct catabolic genes tested ( todC 1, ndoB , xylE and alkB 1), only the todC 1 gene could be amplified in two Klebsiella strains. The biodegradation assay showed that most of the strains had the ability to degrade all of the tested hydrocarbons; however, the strains displayed different efficiencies.
Conclusions:  The oil-degrading Klebsiella isolates obtained from the estuary were closely related to Klebsiella pneumoniae and Klebsiella ornithinolytica . The isolates demonstrated a substantial degree of catabolic plasticity for hydrocarbon degradation.
Significance and Impact of the Study:  The results of this study show that several strains from the Klebsiella genus are able to degrade diverse hydrocarbon compounds. These findings indicate that Klebsiella spp. can be an important part of the oil-degrading microbial community in estuarine areas exposed to sewage.  相似文献   
1000.
Tris(2-aminoethyl)amine (TREN) – a chelating agent used in IMAC – immobilized onto agarose gel was evaluated for the purification of IgG from human serum by negative chromatography. A one-step purification process allowed the recovery of 73.3% of the loaded IgG in the nonretained fractions with purity of 90–95% (based on total protein concentration and nephelometric analysis of albumin, transferrin, and immunoglobulins A, G, and M). The binding capacity was relatively high (66.63 mg of human serum protein/mL). These results suggest that this negative chromatography is a potential technique for purification of IgG from human serum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号